
ICCAD 2015 Contest: Incremental Timing-driven Placement
File formats for Benchmarks and Contest Deliverables

Myung-Chul Kim and Jin Hu

v1.1 – June 2nd, 2015

http://cad-contest.el.cycu.edu.tw/problem C/default.html

Contents

1 Introduction 2

2 Input Files: Benchmarks 2
2.1 .iccad2015 (wrapper) . 2
2.2 .v (verilog) . 2
2.3 .lef (LEF) . 4
2.4 .def (DEF) . 9
2.5 .lib (Timing Liberty format) and .parm . 12
2.6 .sdc (Constraints) . 12

3 Output Files 13
3.1 A simplified DEF (.def) . 13
3.2 A circuit modification file (.ops) . 14

4 Updates 15

1

http://cad-contest.el.cycu.edu.tw/problem_C/default.html

1 Introduction

The contest will primarily deal with localized set of keywords for each file format, both for
input and output. It will also provide a more detailed explanation of the evaluation script.

2 Input Files: Benchmarks

Each benchmark is comprised of a set of seven (7) files with the following extensions: (i)
.iccad2015, (ii) .v, (iii) .lef, (iv) .def, (v) .sdc, (vi) Early.lib, and (vii) Late.lib.

2.1 .iccad2015 (wrapper)

This file contains the list/location of the other six files needed for benchmark parsing:

simple.v simple.lef simple.def simple.sdc simple Early.lib simple Late.lib

It is used as the only input file when loading the benchmark, e.g., for the evaluation script and
for your binary. The order of the file names is not important, e.g.,

simple.v simple.sdc simple.def simple.lef simple Late.lib simple Early.lib

is the same as the above. Each contained filename will have the same directory path location
as the .iccad2015 file. That is, if the call to load the above .iccad2015 file is

%> myPlacer -settings <.parm> -input ../simple/simple.iccad2015 -ut

<target utilization> -max disp <maximum cell displacement in µm>

then the six filenames in simple.iccad2015 will have the same directory path:

./simple/simple.v

../simple/simple.lef

../simple/simple.def

../simple/simple.sdc

../simple/simple Early.lib

../simple/simple Late.lib

2.2 .v (verilog)

The verilog file specifies the top-level hierarchy of the design. For this contest, we will be using
a small set of keywords with the verilog language. If you are implementing your own verilog
parser, you will be expected to support the set of keywords found within the simple.v file
(reproduced below for clarity). The design implemented in simple.v corresponds to the design
found in Figure 1.

2

01. module simple (

02. inp1,

03. inp2,

04. iccad clk,

05. out

06.);

07.

08. // Start PIs

09. input inp1;

10. input inp2;

11. input iccad clk;

12.

13. // Start POs

14. output out;

15.

16. // Start wires

17. wire n1;

18. wire n2;

19. wire n3;

20. wire n4;

21. wire inp1;

22. wire inp2;

23. wire iccad clk;

24. wire out;

25. wire lcb1 fo;

26.

27. // Start cells

28. NAND2 X1 u1 (.a(inp1), .b(inp2), .o(n1));

29. NOR2 X1 u2 (.a(n1), .b(n3), .o(n2));

30. DFF X80 f1 (.d(n2), .CK(lcb1 fo), .q(n3));

31. INV X1 u3 (.a(n3), .o(n4));

32. INV X1 u4 (.a(n4), .o(out));

33. INV Z80 lcb1 (.a(iccad clk), .o(lcb1 fo));

34.

35. endmodule

Lines 01 and 35 define the start and end of the specified design with the keywords module and
endmodule. Lines 01-06 specify the input and output connection names of the module (note
that the direction is not specified here). Lines 09-11 specify the primary inputs (PIs) of the
module with the keyword input. These names must match the ones stated with module (lines
01-06). Line 14 specifies the primary output (PO) of the module with the keyword output.
This name must match the one stated with module (lines 01-06). Lines 17-25 specify the

3

connections or nets within the module with the keyword wire. These connections specify both
the external PIs and POs as well as the internal connections between gates (explained further
after lines 28-33). Lines 28-33 specify the cells used in the design, as well as how the cells are
connected. Each definitions syntax is

cellName instanceName (.pinName (netName))

where every cellName and .pinName should be a specified library file (e.g., simple.def), and
every netName should match one of the specified wire statements (lines 17-25). For example,
on line 28, a NAND2 X1-type cell instance of u1 is specified, its a pin is fed by primary input
inp1, its b pin is fed by primary input inp2, and its o pin feeds the internal net n1. On line
29, n1 feeds the a pin of the NOR2 X1-type cell instance u2.

inp2

inp1

b
a

iccad_clk

inp1
u1

b
a

qd

ck

u2
out

o
o

f1 u4u3

inp2 outn2
n1

n3

iccad_clk

n4
oa oa

lcb1

oa lcb1_fo

Figure 1: Implementation of simple.v.

2.3 .lef (LEF)

The .lef file (in Library Exchange Format (LEF) specifies the library definitions of the different
cells, metal layers, and placement layout of the design. For this contest, we will be using a very
small subset of the keywords in the LEF language. If you are implementing your own parser,
you will be expected to support what is defined in simple.lef (in the simple benchmark), as
well as defined comments beginning with the character ‘#’. The following explains the general
format of the necessary keywords, with snippets of simple.lef reproduced for clarity. The
relevant keywords are those listed in the header, as well as SITE, LAYER, and MACRO.

4

LEF structure. These initial statements are used to set the parsing rules of the LEF file.

01. VERSION 5.7 ;

02. NAMESCASESENSITIVE ON ;

03. BUSBITCHARS “[]′′ ;

04. DIVIDERCHAR “/′′ ;

05.

06. UNITS
07. DATABASE MICRONS 2000 ;

08. END UNITS

09.

10. MANUFACTURINGGRID 0.0025 ;

. . .
99. END LIBRARY

Line 01 specifies the version number of the LEF language used. Line 02 specifies the mode of
name parsing. By default, we will assume this to be “ON”. Line 03 specifies the special character
set used for stating grouped signals e.g., as buses. For instance, myInputs[31] specifies that
myInputs spans 32 bits. For this contest, we will not be defining bus signals (but the keyword
may be part of the LEF file). Line 04 specifies the hierarchy divider special character, e.g.,
myBox/a states that pin a is contained within the instance myBox. Line 06-08 specify the unit
conversion from LEF database (distance) units to microns (µm). In this example, every 1000
LEF database units is equivalent to 1 (µm). Line 10 specifies the grid granularity in µm – all
shapes’ and cells’ locations must be snapped to a multiple of that value in the grid. This value
must be positive. Line 99 specifies the end of the file.
SITE. Each site defines a placement grouping in the design, i.e., the placement grid for a family
of macros and cells. These sites will be used in the keyword ROW in the Design Exchange Format
(DEF) file (Section 2.4). For this contest, the SITE keyword is limited to the following:

01. SITE siteName
02. CLASS { PAD | CORE } ;

03. SYMMETRY {X | Y} ;

04. SIZE width BY height ;

05. END siteName

The following keywords are expected to have the following fields:

• SITE (Lines 01 and 05): siteName is an alphanumeric string no longer than 64 characters.

• CLASS (Line 02): PAD – specifying an I/O pad site – or CORE – specifying a core site.

• SYMMETRY (Line 03): X (Y) – specifying the row’s symmetry about the X- (Y-) axis.
As this contest does not allow cell flipping, this value will not be used.

• SIZE (Line 04): width and height are the dimensions (size) of the site specified in microns.

5

The following shows an example site (the keywords specified within SITE can be in any order).

01. SITE core

02. SIZE 0.19 BY 1.71 ;

03. CLASS CORE ;

04. SYMMETRY Y ;

05. END core

Line 01 and line 05 define the site with name core. Line 02 defines the dimensions width and
height of the site to be 0.19 µm × 1.71 µm. Line 03 specifies the site is of type CORE. Line
04 specifies the symmetry of the site to be about the Y-axis.
LAYER. Each metal layer that is available in the design will be specified here. This information
is used to specify routing layers and where pins are located. For this contest, we will only use
the ROUTING type with a limited set of keywords.

01. LAYER layerName
02. TYPE ROUTING ;

03. DIRECTION {HORIZONTAL | VERTICAL} ;

04. PITCH {distance | xDistance yDistance} ;

05. WIDTH defaultWidth ;

06. OFFSET {distance | xDistance yDistance } ;

07. END layerName

The following keywords are expected to have the following fields:

• LAYER (Lines 01 and 07): layerName is an alphanumeric string no longer than 64
characters.

• TYPE (Line 02): ROUTING is currently the only expected option.

• DIRECTION (Line 03): the layer either has routing tracks parallel to the X-axis (HOR-
IZONTAL) or the Y-axis (VERTICAL).

• PITCH (Line 04): specifies the minimum distance between each routing track in microns
(float). If only distance is specified, it is for both vertical and horizontal tracks. Otherwise,
xDistance and yDistance specify for the horizontal and vertical tracks, respectively.

• WIDTH (Line 05): defaultWidth specifies the routing-track width for all (regular) rout-
ing tracks in microns.

• PITCH (Line 06): specifies the offset distance of the routing grid to align with the
standard cell grid in distance units (float). If only distance is specified, it is for both
x-offset and y-offset. Otherwise, xDistance and yDistance specify for the x-offset and
y-offset, respectively.

6

The following shows an example definition of a metal layer.

01. LAYER metal1

02. TYPE ROUTING ;

03. DIRECTION HORIZONTAL ;

04. PITCH 0.200 ;

05. OFFSET 0.000 ;

06. WIDTH 0.100 ;

07. END metal1

Lines 01 and 07 specify the definition of the layer with name metal1. Line 02 specifies the layer
type to be ROUTING. Line 03 specifies the routing tracks on this layer are HORIZONTAL.
Line 04 specifies the minimum spacing between routing tracks is 0.2 µm. Line 05 specifies no
offset with the routing grid and the standard-cell boundaries. Line 06 specifies the track width
to be 0.1 µm.
MACRO. Each definition specifies the definition of a cell type, which can be instantiated in
other files, e.g., simple.v. For this contest, we will be using a limited set of keywords associated
with MACRO.

01. MACRO macroName

02. CLASS {PAD | CORE} ;

03. ORIGIN point ;

04. SIZE width BY height ;

05. SITE siteName ;

06. PIN pinName DIRECTION {INPUT | OUTPUT}
07. PORT
08. LAYER layerName ;

09. RECT point point ;

10. END
11. END pinName
12. END macroName

The following keywords are expected to have the following fields:

• MACRO (Lines 01 and 12): layerName is an alphanumeric string no longer than 64
characters.

• CLASS (Line 02): Specifies either an I/O pad (PAD) or standard-cell area (CORE).

• ORIGIN (Line 03): Specifies a point (x,y) where to align the origin of the macro to
the DEF COMPONENTS placement point (Section 2.4). The macro is shifted by (x,y)
before alignment. For example, if point is (0,−1), then all macro objects at (0,1) are
shifted to (0,0).

• SIZE (Line 04): Specifies the dimensions (size) width and height of the macro in microns.

• SITE (Line 05): Specifies the macro’s associated siteName (defined as using SITE).

7

• PIN (Lines 06 and 11): Specifies a input (INPUT) or output (OUTPUT) pin with name
pinName. Lines 07-10 are associated with this keyword.

• PORT (Lines 07 and 10): Required (no following variable input).

• LAYER (Line 08): Specifies the macro pin’s associated layerName (defined with LAYER).

• RECT (Line 09): Specifies two points (x1,y1) and (x2,y2) that define the locations of two
opposite corners of the macro pins (specified in microns). If multiple point locations are
specified (e.g., to construct a polygon-shape pin), the pin location (e.g., used for routing
purposes) will be the center of a bounding box of all RECT statements.

The following is an example definition of a macro.

01. MACRO INV X1

02. CLASS CORE ;

03. ORIGIN 0 0 ;

04. SIZE 0.760 BY 1.71

05.

06. SITE core ;

07. PIN o DIRECTION OUTPUT ;

08. PORT
09. LAYER metal1 ;

10. RECT 0.465 0.150 0.53 1.255

11. RECT 0.415 0.150 0.61 0.28

12. END
13. END o

14. PIN a DIRECTION INPUT ;

15. PORT
16. LAYER metal1 ;

17. RECT 0.210 0.340 0.34 0.405

18. END
19. END a

20. END INV X1

Lines 01 and 19 specify the definition of the macro INV X1. Line 02 specifies the macro type
to be CORE. Line 03 specifies the origin of INV X1 to be at (0,0). Line 04 specifies the size
of the macro to be 0.76 µm × 1.71 µm. Line 06 specifies that this macro belongs to the site
core. Lines 07-13 specify an output pin o located on layer metal1. It is comprised of two
rectangles, the first with lower-left and upper-right coordinates being (0.465 µm, 0.15 µm) and
(0.53µm, 1.255 µm), respectively, and the second with lower-left and upper-right coordindates
being (0.415 µm, 0.15 µm) and (0.61µm, 0.28 µm), respectively. Its effective pin location will
be the center of the smallest bounding box that encloses these two rectangles. Lines 14-19
specify an input pin a, located on layer metal1, with lower-left and upper-right coordinates
being (0.21 µm, 0.34 µm) and (0.34µm, 0.405 µm), respectively.

8

2.4 .def (DEF)

The .def file (in Design Exchange Format (LEF) specifies the different cells and connectivity
of the design. For this contest, we will be using a very small subset of the keywords in the
DEF language. If you are implementing your own parser, you will be expected to support what
is defined in simple.def, as well as defined comments beginning with the character ‘#’. The
following explains the general format of the necessary keywords, with snippets of simple.def
reproduced for clarity. The relevant keywords are those listed in the header, as well as ROW,
COMPONENTS, PINS, and NETS.
DEF structure. These initial statements are used to set the parsing rules of the DEF file.

01. VERSION 5.7 ;

02. DIVIDERCHAR “/′′ ;

03. BUSBITCHARS “[]′′ ;

04. DESIGN simple ;

05. UNITS DISTANCE MICRONS 2000 ;

06.

07. DIEAREA (0 0) (13680 13680) ;

. . .
99. END DESIGN

Line 01 specifies the DEF language version used. Line 02 specifies the hierarchy delimiter
character. For instance, myBox/a defines the a to be within the instance myBox. Line 03
specifies the character set used to specify groups of signals, e.g., bus signals. For instance,
myInputs[31] specify a signal that spans 32 bits. For this contest, we will not be defining bus
signals (but the keyword may be part of the DEF file). Line 04 specifies the design name. Line
05 specifies the unit conversion between DEF database units to microns (µm). In this example,
every 2000 DEF units is equivalent to 1 µm. Line 07 specifies the lower-left and upper-right
coordinates of the total layout area in DEF database units (integers). Line 99 specifies the end
of the DEF file.
ROW. Each row specifies a region where standard cells are placed. It has the following syntax:

ROW rowName siteName origX origY siteOrient DO numX BY numY STEP stepX stepY

Here, rowName defines the row name, siteName defines the associated site name (as defined by
SITE, (origX, origY) defines the origin (lower-left) of the row in DEF database units (integers),
and siteOrient defines site orientation (up to two characters). The DO numX BY numY segment
specifies the number of sites in ROW. At least one of numX and numY must equal 1; if numX
= 1, then the row is vertical, and if numY = 1, then the row is horizontal. If both numX =
numY = 1, then the row is a single site. The STEP stepX stepY segment specifies the spacing
between sites in the horizontal (stepX) or vertical (stepY) row in DEF database units. The
following shows an example definition of a row with name core SITE ROW 2 in the site core at

9

(0,6840) with ‘N’ orientation. The row is horizontal with 36 sites and 380 DEF database units
between each site.

ROW core SITE ROW 2 core 0 6840 N DO 36 BY 1 STEP 380 0 ;

COMPONENTS. All cell instances are defined here with DEF database units.

01. COMPONENTS numComponents ;

02. − instanceName cellName
03. + {PLACED | FIXED} (xLoc yLoc) orientation ;

04. END COMPONENTS

In line 01, numComponents specifies the total number of components or cell instances there
are in the design. Line 02 specifies the instance instanceName and cell-type cellName names
of the component, e.g., those defined in the verilog file. Line 03 specifies if the cell instance
is movable (PLACED) or not movable (FIXED), along with the lower-left coordinate of the
cell (xLoc,yLoc) in DEF database units and its orientation. Line 04 specifies the end of the
COMPONENTS keyword. The following shows an example definition of components:

01. COMPONENTS 6 ;

02. - u1 NAND2 X1

03. + PLACED (3420 6840) N ;

04. - u2 NOR2 X1

05. + PLACED (3420 3420) N ;

06. - f1 DFF X80

07. + FIXED (684 0) N ;

08. - u3 INV X1

09. + PLACED (6840 3420) N ;

10. - u4 INV X1

11. + PLACED (12160 6840) N ;

12. - lcb1 INV Z80

13. + PLACED (0 12160) N ;

14. END COMPONENTS

Lines 01 and 12 specify six (6) cell instances in the components definition. Lines 02-03 define
a movable instance of u1 of cell-type NAND2 X1 at location (3420,6840) with orientation ‘N’.
Lines 04-05 define a movable instance of u2 of cell-type NOR X1 at location (3420,3420) with
orientation ‘N’. Lines 06-07 define a non-movable instance of f1 of cell-type DFF X80 at location
(684,0) with orientation ‘N’. Lines 08-09 define a movable instance of u3 of cell-type INV X1

at location (6840,3420) with orientation ‘N’. Lines 10-11 define a movable instance of u4 of
cell-type INV X1 at location (12160,6840) with orientation ‘N’. Lines 12-13 define a movable
instance of lcb1 of cell-type INV Z80 at location (0,12160) with orientation ‘N’.

10

PINS. In the DEF file, only the primary input and outputs pins of the design are specified.

01. PINS numPins ;

02. - pinName + NET netName
03. + DIRECTION {INPUT | OUTPUT}
04. + {PLACED | FIXED} point orientation
05. + LAYER layerName (point) (point) ;

06. END PINS

Line 01 specifies the number of primary input and output pins in the design (numPins). Line
02 specifies the individual pin name (pinName) and its connected net (netName). These names
should match the ones specified in the other files, e.g., verilog. Line 03 specifies the pin as
either a primary input (INPUT) or primary output (OUTPUT). Line 04 specifies if the pin is
movable (PLACED) or non-movable (FIXED), along with the lower-left coordinate of the pin
(x,y) in DEF database units and the orientation. Line 05 specifies the layer (layerName) the
pin is located on, as well as its geometry, defined in DEF database units, as the two opposite
corners. Note that the semi-colon (;) character denotes the end of the pin read – if lines 03
and 05 were in reverse order, the semi-colon would be after {INPUT — OUTPUT}. Line 06
specifies the end of the PINS keyword. The following is example pins definition:

01. PINS 4 ;

02. - out + NET out

03. + DIRECTION OUTPUT

04. + FIXED (13680 6000) N

05. + LAYER metal3 (0 0) (100 100) ;

06. - inp1 + NET inp1

07. + DIRECTION INPUT

08. + FIXED (3420 13680) N

09. + LAYER metal3 (0 0) (100 100) ;

10. - inp2 + NET inp2

11. + DIRECTION INPUT

12. + FIXED (6840 13680) N

13. + LAYER metal3 (0 0) (100 100) ;

14. - iccad clk + NET iccad clk

15. + DIRECTION INPUT

16. + FIXED (0 6480) N

17. + LAYER metal3 (0 0) (100 100) ;

18. END PINS

Lines 01 and 18 asserts four (4) primary inputs and outputs in the design. Lines 02-05 define the
primary output out pin connected to net out with fixed location (13680,6000) and orientation
‘N’ on metal3 with size 100 × 100. Lines 06-09 define the primary input inp1 pin connected
to net inp1 with fixed location (3420,13680) and orientation ‘N’ on metal3 with size 100 ×

11

100. Lines 10-13 define the primary input inp2 pin connected to net inp2 with fixed location
(6840,13680) and orientation ‘N’ on metal3 with size 100 × 100. Lines 14-17 define the primary
input iccad clk pin connected to net iccad clk with fixed location (0,6480) and orientation
‘N’ on metal3 with size 100 × 100.

2.5 .lib (Timing Liberty format) and .parm

The early / late timing information associated with standard cells and macro blocks is contained
in Synopsys Liberty format. The contest timer reads verilog(.v), parasitic information (.spef),
and timing information(.lib) to measure timing. The spef files are internally generated by the
contest evaluation script. The parameter file (.parm) specifies technology-dependent parame-
ters, such as local (intermediate) wire resistances / capacitances per m. Those parameters are
used to extract parasitic information of a given placement and then to write the spef files.

2.6 .sdc (Constraints)

The Synopsys Design Constraints (SDC) file specifies the set of assertions or constraints used
as initial timing conditions for the design. For this contest, we will be using a very limited set
of commands. If you are writing your own parser, you are expected to support the commands
and keywords specified in simple.sdc, as well as the comments starting with ‘#’. All time
values are specified in picoseconds (ps). We expect to be using the following five commands
and their associated options in a restricted manner:

• get ports {pinName pinName . . .}:
returns a set of pins specified by the list of pinNames, which are enclosed in {}. A single
pinName does not require {}, but can have them.

• create clock -name clockName -period val [get ports. . .]:
creates a clock signal clockName with a corresponding period of val, and associates it
with the primary input (clock) pin returned from get ports.

• set input delay val -clock clockName [get ports. . .]:
sets the arrival time of the primary input pins with val time with respect to clockName.

• set driving cell -lib cell cellName -pin pinName
-input transition fall val -input transition rise val [get ports. . .]:
sets the cell type (cellName) and pin name (pinName) with associated input slews for rise
and fall.

• set output delay -clock clockName val [get ports. . .]:
sets the required arrival time of the primary output signals with respect to clockName.

• set load -pin load val [get ports. . .]:
asserts the capacitance (specified in fF) at the output pin.

This is similar to that shown in Figure 2. The following shows an example set of assertions.

12

iccad_clk

inp1

out

inp2

Figure 2: Circuit in simple.v with assertions.

01. create clock -name mclk -period 150.0 [get ports iccad clk]
02. set input delay 0.0 [get ports {inp1}] -clock mclk

03. set input delay 0.0 [get ports {inp2}] -clock mclk

04. set driving cell -lib cell INV X80 -pin o [get ports {inp1}]
-input transition fall 10.0 -input transition rise 10.0

05. set driving cell -lib cell INV X80 -pin o [get ports {inp2}]
-input transition fall 10.0 -input transition rise 10.0

06. set output delay 0.0 [get ports {out}] -clock mclk

07. set load -pin load 4.0 [get ports {out}]

Line 01 creates a clock signal mclk with a period of 150 ps, and assigns it to the primary input
iccad clk. Line 02 (03) sets the arrival time of inp1 (inp2) to 0, with respect to the mclk

signal. Line 04 (05) sets the input slew of 10 ps at the driving cell INV X80 feeding inp1

(inp2) for both rise and fall. Line 06 sets the required time at out to 0, with respect to the
mclk signal. Line 07 sets the output capacitance attached to out to 4 fF.

3 Output Files

The expected output files (that are generated by your placer) are (i) a simplified DEF file
(.def) that reports the placement locations in DEF database units of all cell instances in the
design, and (ii) circuit modification file (.ops) that reports any changes in the netlist in terms
of flipflip-to-LCB associations.

3.1 A simplified DEF (.def)

In this DEF output file, you should include all cells, i.e., those with either the FIXED or PLACED
property. The expected keywords are (along with any comments): VERSION, DESIGN, and
COMPONENTS. For details regarding the syntax of these keywords and a full explanation
of DEF, please refer to Section 2.4. Below shows an example output DEF file:

13

01. VERSION 5.7 ;

02. DESIGN simple ;

03.

04. COMPONENTS 6 ;

05. - u1 NAND2 X1

06. + PLACED (3420 6840) N ;

07. - u4 NOR2 X1

08. + PLACED (3420 3420) N ;

07. - f1 DFF X80

08. + FIXED (684 0) N ;

09. - u3 INV X1

10. + PLACED (6840 3420) N ;

11. - u4 INV X1

12. + PLACED (12160 6840) N ;

13. - lcb1 INV Z80

14. + PLACED (0 12160) N ;

15. END COMPONENTS

16.

17. END DESIGN

Line 01 documents the DEF language version. Line 02 states the design name. Lines 04 and
15 state the set of five (6) components or cells in the design. Lines 05-06 state the cell instance
u1 is at (3420,6840). Lines 07-08 state the cell instance u2 is at (3420,3420). Lines 07-08 state
the cell instance f1 is at (684,0). Lines 09-10 state the cell instance u3 is at (6840,3420). Lines
11-12 state the cell instance u4 is at (12160,6840). Lines 13-14 state the cell instance lcb1 is at
(0,12160). The orientations should be ’N’, as cell flipping/rotation is disallowed in the contest.

3.2 A circuit modification file (.ops)

The file contains a list of circuit modification operations in case of changing original FF-to-LCB
associations. The file shares the same format with OPS file from TAU 2015 contest, but only
two pin-level modification operations are allowed.

• disconnect pin <pin name> : removes the FF’s clk pin from its driving LCB’s fanout.

• connect pin <pin name> <net name> : adds the FF’s clk pin to new LCB’s fanout.

The listed circuit modification operations in OPS file occur in order, before the evaluation script
generates SPEF file to run a contest timer. For a FF’s clock pin, note that disconnect pin

operation must precede connect pin operation. The evaluation script checks whether all FF’s
clock pins are properly connected to LCBs. If you do not want to make any changes in terms
of FF-to-LCB associations, please leave the file empty. Below shows an example output OPS
file (final.ops) for the simple benchmark, which is effectively no-op:

14

01. disconnect pin f1:ck

02. connect pin f1:ck lcb1 fo

Line 01 detaches the pin f1:ck from its driving net (lcb1 fo). Line 02 attaches the pin f1:ck

back to the net lcb1 fo as a sink.

4 Updates

• 06/02/15 [v1.1]: early and late timing library files included in .iccad2015

• 05/07/15 [v1.0]: initial version.

15

	Introduction
	Input Files: Benchmarks
	.iccad2015 (wrapper)
	.v (verilog)
	.lef (LEF)
	.def (DEF)
	.lib (Timing Liberty format) and .parm
	.sdc (Constraints)

	Output Files
	A simplified DEF (.def)
	A circuit modification file (.ops)

	Updates

